26 research outputs found

    TwiSE at SemEval-2016 Task 4: Twitter Sentiment Classification

    Full text link
    This paper describes the participation of the team "TwiSE" in the SemEval 2016 challenge. Specifically, we participated in Task 4, namely "Sentiment Analysis in Twitter" for which we implemented sentiment classification systems for subtasks A, B, C and D. Our approach consists of two steps. In the first step, we generate and validate diverse feature sets for twitter sentiment evaluation, inspired by the work of participants of previous editions of such challenges. In the second step, we focus on the optimization of the evaluation measures of the different subtasks. To this end, we examine different learning strategies by validating them on the data provided by the task organisers. For our final submissions we used an ensemble learning approach (stacked generalization) for Subtask A and single linear models for the rest of the subtasks. In the official leaderboard we were ranked 9/35, 8/19, 1/11 and 2/14 for subtasks A, B, C and D respectively.\footnote{We make the code available for research purposes at \url{https://github.com/balikasg/SemEval2016-Twitter\_Sentiment\_Evaluation}.

    Multitask Learning for Fine-Grained Twitter Sentiment Analysis

    Get PDF
    Traditional sentiment analysis approaches tackle problems like ternary (3-category) and fine-grained (5-category) classification by learning the tasks separately. We argue that such classification tasks are correlated and we propose a multitask approach based on a recurrent neural network that benefits by jointly learning them. Our study demonstrates the potential of multitask models on this type of problems and improves the state-of-the-art results in the fine-grained sentiment classification problem.Comment: International ACM SIGIR Conference on Research and Development in Information Retrieval 201

    On a Topic Model for Sentences

    Full text link
    Probabilistic topic models are generative models that describe the content of documents by discovering the latent topics underlying them. However, the structure of the textual input, and for instance the grouping of words in coherent text spans such as sentences, contains much information which is generally lost with these models. In this paper, we propose sentenceLDA, an extension of LDA whose goal is to overcome this limitation by incorporating the structure of the text in the generative and inference processes. We illustrate the advantages of sentenceLDA by comparing it with LDA using both intrinsic (perplexity) and extrinsic (text classification) evaluation tasks on different text collections

    Results of the BioASQ tasks of the Question Answering Lab at CLEF 2015

    No full text
    International audienceThe goal of the BioASQ challenge is to push research towards highly precise biomedical information access systems. We aim to promote systems and approaches that are able to deal with the whole diversity of the Web, especially for, but not restricted to, the context of bio-medicine. The third challenge consisted of two tasks: semantic indexing and question answering.59 systems by 18 different teams participated in the semantic indexing task (Task 3a).The question answering task was further subdivided into two phases. 24 systems from 9 different teams participates in the annotation phase (Task 3b-phase A), while 26 systems of 10 different teams participated in the answer generation phase (Task 3b-phase B).Overall, the best systems were able to outperform the strong baselines provided by the organizers.In this paper, we present the data used during the challenge as well as the technologies which were used by the participants
    corecore